Data Structures & Algorithms Python
What you’ll learn
Mastery of Data Structures and Algorithms
Confidently Answer Technical Interview Questions
Time and Space Complexity of Data Structures and Algorithms
Strengthen Your Skills as a Developer
Requirements
Basic programming
No experience with data structures or algorithms required
Description
This course is different…After each line of code, an animation of the data structure or algorithm is updated to show exactly what that line of code did.The advanced level animations provide huge advantages to students:Increased understanding of the conceptsGreater rate of retentionThe material can be covered in a fraction of the timeThat means that you can actually learn more material in less time and have higher retention of the material.That is the key combination of factors to prepare you for the technical interview that lands you your dream job!I invite you to watch a few of the videos in this course to see what I mean. The difference will be noticeable right away! I spent over a year to create this course with the goal that an absolute beginner can take it and understand all of the concepts the first time through.What you will get in this course…Over 100 hand crafted HD videos that use animations to illustrate technical concepts.Here is what you will learn in this course:TechnicalBig O notationData StructuresListsLinked ListsDoubly Linked ListsStacks & QueuesBinary TreesHash TablesGraphsAlgorithmsSorting Bubble SortSelection SortInsertion SortMerge SortQuick SortSearchingBreadth First SearchDepth First SearchI am excited to help you move forward with your coding and career goals. Let’s get started!
Overview
Section 1: Introduction
Lecture 1 Introduction
Lecture 2 Code Editor
Section 2: Big O
Lecture 3 Overview (Please Watch)
Lecture 4 Big O: Intro
Lecture 5 Big O: Worst Case
Lecture 6 Big O: O(n)
Lecture 7 Big O: Drop Constants
Lecture 8 Big O: O(n^2)
Lecture 9 Big O: Drop Non-Dominants
Lecture 10 Big O: O(1)
Lecture 11 Big O: O(log n)
Lecture 12 Big O: Different Terms for Inputs
Lecture 13 Big O: Lists
Lecture 14 Big O: Wrap Up
Section 3: Classes & Pointers
Lecture 15 Classes
Lecture 16 Pointers
Section 4: Data Structures: Linked Lists
Lecture 17 Linked List: Intro
Lecture 18 LL: Big O
Lecture 19 LL: Under the Hood
Lecture 20 LL: Constructor
Lecture 21 LL: Print List
Lecture 22 LL: Append
Lecture 23 LL: Reminder
Lecture 24 LL: Pop Intro
Lecture 25 LL: Pop Code
Lecture 26 LL: Prepend
Lecture 27 LL: Pop First
Lecture 28 LL: Get
Lecture 29 LL: Set
Lecture 30 LL: Insert
Lecture 31 LL: Remove
Lecture 32 LL: Reverse
Section 5: Data Structures: Doubly Linked Lists
Lecture 33 DLL: Constructor
Lecture 34 DLL: Append
Lecture 35 DLL: Pop
Lecture 36 DLL: Prepend
Lecture 37 DLL: Pop First
Lecture 38 DLL: Get
Lecture 39 DLL: Set
Lecture 40 DLL: Insert
Lecture 41 DLL: Remove
Section 6: Data Structures: Stacks & Queues
Lecture 42 Stack: Intro
Lecture 43 Stack: Constructor
Lecture 44 Stack: Push
Lecture 45 Stack: Pop
Lecture 46 Queue: Intro
Lecture 47 Queue: Constructor
Lecture 48 Queue: Enqueue
Lecture 49 Queue: Dequeue
Section 7: Data Structures: Trees
Lecture 50 Trees: Intro & Terminology
Lecture 51 Binary Search Trees: Example
Lecture 52 BST: Big O
Lecture 53 BST: Constructor
Lecture 54 BST: Insert – Intro
Lecture 55 BST: Insert – Code
Lecture 56 BST: Contains
Lecture 57 BST: Minimum Value
Section 8: Data Structures: Hash Tables
Lecture 58 Hash Table: Intro
Lecture 59 HT: Collisions
Lecture 60 HT: Constructor
Lecture 61 HT: Set
Lecture 62 HT: Get
Lecture 63 HT: Keys
Lecture 64 HT: Big O
Lecture 65 HT: Interview Question
Section 9: Data Structures: Graphs
Lecture 66 Graph: Intro
Lecture 67 Graph: Adjacency Matrix
Lecture 68 Graph: Adjacency List
Lecture 69 Graph: Big O
Lecture 70 Graph: Add Vertex
Lecture 71 Graph: Add Edge
Lecture 72 Graph: Remove Edge
Lecture 73 Graph: Remove Vertex
Section 10: Algorithms: Recursion
Lecture 74 Recursion: Intro
Lecture 75 Call Stack
Lecture 76 Factorial
Section 11: Algorithms: Basic Sorts
Lecture 77 Bubble Sort: Intro
Lecture 78 Bubble Sort: Code
Lecture 79 Selection Sort: Intro
Lecture 80 Selection Sort: Code
Lecture 81 Insertion Sort: Intro
Lecture 82 Insertion Sort: Code
Lecture 83 Insertion Sort: Big O
Section 12: Algorithms: Merge Sort
Lecture 84 Merge Sort: Overview
Lecture 85 Merge: Intro
Lecture 86 Merge: Code
Lecture 87 Merge Sort: Intro
Lecture 88 Merge Sort: Code
Lecture 89 Merge Sort: Big O
Section 13: Algorithms: Quick Sort
Lecture 90 Quick Sort: Intro
Lecture 91 Pivot: Intro
Lecture 92 Pivot: Code
Lecture 93 Quick Sort: Code
Lecture 94 Quick Sort: Big O
Section 14: Algorithms: Tree Traversal
Lecture 95 Tree Traversal: Intro
Lecture 96 BFS (Breadth First Search): Intro
Lecture 97 BFS: Code
Lecture 98 DFS (Depth First Search): PreOrder – Intro
Lecture 99 DFS: PreOrder – Code
Lecture 100 DFS: PostOrder – Intro
Lecture 101 DFS: PostOrder – Code
Lecture 102 DFS: InOrder – Intro
Lecture 103 DFS: InOrder – Code
Section 15: Coding Exercises
Section 16: BONUS SECTION: THANK YOU!
Lecture 104 BONUS LECTURE
Python programmers preparing for an interview,University students taking a data structures and algorithms course
Course Information:
Udemy | English | 7h 30m | 1.33 GB
Created by: Scott Barrett
You Can See More Courses in the Developer >> Greetings from CourseDown.com