SPSS For Research
What you’ll learn
perform simple operations with data: define variables, recode variables, create dummy variables, select and weight cases, split files
built the most useful charts in SPSS: column charts, line charts, scatterplot charts, boxplot diagrams
perform the basic data analysis procedures: Frequencies, Descriptives, Explore, Means, Crosstabs
test the hypothesis of normality (with numeric and graphic methods)
detect the outliers in a data series (with numeric and graphic methods)
transform variables
perform the main one-sample analyses: one-sample t test, binomial test, chi square for goodness of fit
perform the tests of association: Pearson and Spearman correlation, partial correlation, chi square test for association, loglinear analysis
execute the analyses for means comparison: t test, between-subjects ANOVA, repeated measures ANOVA, nonparametric tests (Mann-Whitney, Wilcoxon, Kruskal-Wallis etc.)
perform the regression analysis (simple and multiple regression, sequential regression, logistic regression)
compute and interpret various tyes of reliability indicators (Cronbach’s alpha, Cohen’s kappa, Kendall’s W)
use the data reduction techniques (multidimensional scaling, principal component analysis, correspondence analysis)
use the main grouping techniques (cluster analysis, discriminant analysis)
Requirements
the SPSS package (version 18 or newer recommended)
very basic knowledge of statistics (mean, standard deviation, confidence interval, significance level, things like that)
Description
Become an expert in statistical analysis with the most extended SPSS course at Udemy: 146 video lectures covering about 15 hours of video!Within a very short time you will master all the essential skills of an SPSS data analyst, from the simplest operations with data to the advanced multivariate techniques like logistic regression, multidimensional scaling or principal component analysis.The good news – you don’t need any previous experience with SPSS. If you know the very basic statistical concepts, that will do.And you don’t need to be a mathematician or a statistician to take this course (neither am I). This course was especially conceived for people who are not professional mathematicians – all the statistical procedures are presented in a simple, straightforward manner, avoiding the technical jargon and the mathematical formulas as much as possible. The formulas are used only when it is absolutely necessary, and they are thoroughly explained.Are you a student or a PhD candidate? An academic researcher looking to improve your statistical analysis skills? Are you dreaming to get a job in the statistical analysis field some day? Are you simply passionate about quantitative analysis? This course is for you, no doubt about it.Very important: this is not just an SPSS tutorial. It does not only show you which menu to select or which button to click in order to run some procedure. This is a hands-on statistical analysis course in the proper sense of the word. For each statistical procedure I provide the following pieces of information: a short, but comprehensive description (so you understand what that technique can do for you) how to perform the procedure in SPSS (live) how to interpret the main output, so you can check your hypotheses and find the answers you need for your research) The course contains 56 guides, presenting 56 statistical procedures, from the simplest to the most advanced (many similar courses out there don’t go far beyond the basics).The first guides are absolutely free, so you can dive into the course right now, at no risk. And don’t forget that you have 30 full days to evaluate it. If you are not happy, you get your money back.So, what do you have to lose?
Overview
Section 1: Getting Started
Lecture 1 Introduction
Lecture 2 Course Outline
Section 2: The Basics
Lecture 3 Guide 1: Working With SPSS Files
Lecture 4 Guide 2: Defining Variables
Lecture 5 Guide 3: Variable Recoding
Lecture 6 Guide 4: Dummy Variables
Lecture 7 Guide 5: Selecting Cases
Lecture 8 Guide 6: File Splitting
Lecture 9 Guide 7: Data Weighting
Section 3: Creating Charts in SPSS
Lecture 10 Guide 8: Column Charts
Lecture 11 Guide 9: Line Charts
Lecture 12 Guide 10: Scatterplot Charts
Lecture 13 Guide 11: Boxplot Diagrams
Section 4: Simple Analysis Techniques
Lecture 14 Guide 12: Frequencies Procedure
Lecture 15 Guide 13: Descriptives Procedure
Lecture 16 Guide 14: Explore Procedure
Lecture 17 Guide 15: Means Procedure
Lecture 18 Guide 16: Crosstabs Procedure
Section 5: Assumption Checking. Data Transformations
Lecture 19 Guide 17: Checking for Normality – Numerical Methods
Lecture 20 Guide 17: Checking for Normality – Graphical Methods
Lecture 21 Guide 17: Checking for Normality – What to Do If We Do Not Have Normality?
Lecture 22 Guide 18: Detecting Outliers – Graphical Methods
Lecture 23 Guide 18: Detecting Outliers – Numerical Methods
Lecture 24 Guide 18: Detecting Outliers – How to Handle the Outliers
Lecture 25 Guide 19: Data Transformations
Section 6: One-Sample Tests
Lecture 26 Guide 20: One-Sample T Test – Introduction
Lecture 27 Guide 20: One-Sample T Test – Running the Procedure
Lecture 28 Guide 21: Binomial Test
Lecture 29 Guide 21: Binomial Test with Weighted Data
Lecture 30 Guide 22: Chi Square for Goodness-of-Fit
Lecture 31 Guide 22: Chi Square for Goodness-of-Fit with Weighted Data
Section 7: Association Tests
Lecture 32 Guide 23: Pearson Correlation – Introduction
Lecture 33 Guide 23: Pearson Correlation – Assumption Checking
Lecture 34 Guide 23: Pearson Correlation – Running the Procedure
Lecture 35 Guide 24: Spearman Correlation – Introduction
Lecture 36 Guide 24: Spearman Correlation – Running the Procedure
Lecture 37 Guide 25: Partial Correlation – Introduction
Lecture 38 Guide 25: Partial Correlation – Practical Example
Lecture 39 Guide 26: Chi Square For Association
Lecture 40 Guide 26: Chi Square For Association with Weighted Data
Lecture 41 Guide 27: Loglinear Analysis – Introduction
Lecture 42 Guide 27: Loglinear Analysis – Hierarchical Loglinear Analysis
Lecture 43 Guide 27: Loglinear Analysis – General Loglinear Analysis
Section 8: Tests For Mean Difference
Lecture 44 Guide 28: Independent-Sample T Test – Introduction
Lecture 45 Guide 28: Independent-Sample T Test – Assumption Testing
Lecture 46 Guide 28: Independent-Sample T Test – Results Interpretation
Lecture 47 Guide 29: Paired-Sample T Test – Introduction
Lecture 48 Guide 29: Paired-Sample T Test – Assumption Testing
Lecture 49 Guide 29: Paired-Sample T Test – Results Interpretation
Lecture 50 Guide 30: One-Way ANOVA – Introduction
Lecture 51 Guide 30: One-Way ANOVA – Assumption Testing
Lecture 52 Guide 30: One-Way ANOVA – F Test Results
Lecture 53 Guide 30: One-Way ANOVA – Multiple Comparisons
Lecture 54 Guide 31: Two-Way ANOVA – Introduction
Lecture 55 Guide 31: Two-Way ANOVA – Assumption Testing
Lecture 56 Guide 31: Two-Way ANOVA – Interaction Effect
Lecture 57 Guide 31: Two-Way ANOVA – Simple Main Effects
Lecture 58 Guide 32: Three-Way ANOVA – Introduction
Lecture 59 Guide 32: Three-Way ANOVA – Assumption Testing
Lecture 60 Guide 32: Three-Way ANOVA – Third Order Interaction
Lecture 61 Guide 32: Three-Way ANOVA – Simple Second Order Interaction
Lecture 62 Guide 32: Three-Way ANOVA – Simple Main Effects
Lecture 63 Guide 32: Three-Way ANOVA – Simple Comparisons (1)
Lecture 64 Guide 32: Three-Way ANOVA – Simple Comparisons (2)
Lecture 65 Guide 33: Multivariate ANOVA – Introduction
Lecture 66 Guide 33: Multivariate ANOVA – Assumption Checking (1)
Lecture 67 Guide 33: Multivariate ANOVA – Assumption Checking (2)
Lecture 68 Guide 33: Multivariate ANOVA – Result Interpretation
Lecture 69 Guide 34: Analysis of Covariance (ANCOVA) – Introduction
Lecture 70 Guide 34: Analysis of Covariance (ANCOVA) – Assumption Checking (1)
Lecture 71 Guide 34: Analysis of Covariance (ANCOVA) – Assumption Checking (2)
Lecture 72 Guide 34: Analysis of Covariance (ANCOVA) – Results Intepretation
Lecture 73 Guide 35: Repeated Measures ANOVA – Introduction
Lecture 74 Guide 35: Repeated Measures ANOVA – Assumption Checking
Lecture 75 Guide 35: Repeated Measures ANOVA – Results Interpretation
Lecture 76 Guide 36: Within-Within Subjects ANOVA – Introduction
Lecture 77 Guide 36: Within-Within Subjects ANOVA – Assumption Checking
Lecture 78 Guide 36: Within-Within Subjects ANOVA – Interaction
Lecture 79 Guide 36: Within-Within Subjects ANOVA – Simple Main Effects (1)
Lecture 80 Guide 36: Within-Within Subjects ANOVA – Simple Main Effects (2)
Lecture 81 Guide 36: Within-Within Subjects ANOVA – Case of Nonsignificant Interaction
Lecture 82 Guide 37: Mixed ANOVA – Introduction
Lecture 83 Guide 37: Mixed ANOVA – Assumption Checking
Lecture 84 Guide 37: Mixed ANOVA – Interaction
Lecture 85 Guide 37: Mixed ANOVA – Simple Main Effects (1)
Lecture 86 Guide 37: Mixed ANOVA – Simple Main Effects (2)
Lecture 87 Guide 37: Mixed ANOVA – Case of Nonsignificant Interaction
Lecture 88 Guide 38: Mann-Whitney Test – Introduction
Lecture 89 Guide 38: Mann-Whitney Test – Results Interpretation
Lecture 90 Guide 39: Wilcoxon and Sign Tests – Wilcoxon Test
Lecture 91 Guide 39: Wilcoxon and Sign Tests – Sign Test
Lecture 92 Guide 40: Kruskal-Wallis and Median Tests – Kruskal-Wallis Test
Lecture 93 Guide 40: Kruskal-Wallis and Median Tests – Median Test
Lecture 94 Guide 41: Friedman Test
Lecture 95 Guide 42: McNemar Test
Section 9: Predictive Techniques
Lecture 96 Guide 43: Simple Regression – Introduction
Lecture 97 Guide 43: Simple Regression – Assumption Checking (1)
Lecture 98 Guide 43: Simple Regression – Assumption Checking (2)
Lecture 99 Guide 43: Simple Regression – Results Interpretation
Lecture 100 Guide 44: Multiple Regression – Introduction
Lecture 101 Guide 44: Multiple Regression – Assumption Checking
Lecture 102 Guide 44: Multiple Regression – Results Interpretation
Lecture 103 Guide 45: Regression with Dummy Variables
Lecture 104 Guide 46: Sequential Regression
Lecture 105 Guide 47: Binomial Regression – Introduction
Lecture 106 Guide 47: Binomial Regression – Assumption Checking
Lecture 107 Guide 47: Binomial Regression – Goodness-of-Fit Indicators
Lecture 108 Guide 47: Binomial Regression – Coefficient Interpretation (1)
Lecture 109 Guide 47: Binomial Regression – Coefficient Interpretation (2)
Lecture 110 Guide 47: Binomial Regression – Classification Table
Lecture 111 Guide 48: Multinomial Regression – Introduction
Lecture 112 Guide 48: Multinomial Regression – Assumption Checking
Lecture 113 Guide 48: Multinomial Regression – Goodness-of-Fit Indicators
Lecture 114 Guide 48: Multinomial Regression – Coefficient Interpretation (1)
Lecture 115 Guide 48: Multinomial Regression – Coefficient Interpretation (2)
Lecture 116 Guide 48: Multinomial Regression – Coefficient Interpretation (3)
Lecture 117 Guide 48: Multinomial Regression – Classification Table
Lecture 118 Guide 49: Ordinal Regression – Introduction
Lecture 119 Guide 49: Ordinal Regression – Assumption Testing
Lecture 120 Guide 49: Ordinal Regression – Goodness-of-Fit Indicators
Lecture 121 Guide 49: Ordinal Regression – Coefficient Interpretation (1)
Lecture 122 Guide 49: Ordinal Regression – Coefficient Interpretation (2)
Lecture 123 Guide 49: Ordinal Regression – Classification Table
Section 10: Scaling Techniques
Lecture 124 Guide 50: Reliability Analysis – Cronbach’s Alpha
Lecture 125 Guide 50: Reliability Analysis – Cohen’s Kappa
Lecture 126 Guide 50: Reliability Analysis – Kendall’s W
Lecture 127 Guide 51: Multidimensional Scaling – Introduction
Lecture 128 Guide 51: Multidimensional Scaling – ALSCAL procedure (1)
Lecture 129 Guide 51: Multidimensional Scaling – ALSCAL procedure (2)
Lecture 130 Guide 51: Multidimensional Scaling – PROXSCAL procedure (1)
Lecture 131 Guide 51: Multidimensional Scaling – PROXSCAL procedure (2)
Section 11: Data Reduction
Lecture 132 Guide 52: Principal Component Analysis – Introduction
Lecture 133 Guide 52: Principal Component Analysis – Running the Procedure
Lecture 134 Guide 52: Principal Component Analysis – Testing For Adequacy
Lecture 135 Guide 52: Principal Component Analysis – Obtaining a Final Solution
Lecture 136 Guide 52: Principal Component Analysis – Interpreting the Final Solutions
Lecture 137 Guide 52: Principal Component Analysis – Final Considerations
Lecture 138 Guide 53: Correspondence Analysis – Introduction
Lecture 139 Guide 53: Correspondence Analysis – Running the Procedure
Lecture 140 Guide 53: Correspondence Analysis – Results Interpretation
Lecture 141 Guide 53: Correspondence Analysis – Imposing Category Constraints
Section 12: Grouping Methods
Lecture 142 Guide 54: Cluster Analysis – Introduction
Lecture 143 Guide 54: Cluster Analysis – Hierarchical Cluster
Lecture 144 Guide 54: Cluster Analysis – K-Means Cluster
Lecture 145 Guide 55: Discriminant Analysis – Introduction
Lecture 146 Guide 55: Discriminant Analysis – Simple DA
Lecture 147 Guide 55: Discriminant Analysis – Multiple DA
Section 13: Addenda
Lecture 148 Guide 56: Multiple Response Analysis
Section 14: Course Materials
Lecture 149 Download Links
students,PhD candidates,academic researchers,business researchers,University teachers,anyone looking for a job in the statistical analysis field,anyone who is passionate about quantitative research
Course Information:
Udemy | English | 14h 3m | 10.48 GB
Created by: Bogdan Anastasiei
You Can See More Courses in the Business >> Greetings from CourseDown.com