The Essential Guide to Stata
What you’ll learn
An essential introduction to Stata
Data manipulation in Stata
Data visualisation in Stata
Data analysis in Stata
Regression modelling in Stata
Simulation in Stata
Count data modelling
Categorical data modelling
Survival analysis
Panel Data Analysis
Epidemiology
Instrumental Variables
Power Analysis
Difference-in-Differences
Requirements
There are no requirements
Description
Make sure to check out my twitter feed for monthly promo codes and other updates (@easystats3).The Essential Guide to Data Analytics with StataLearning and applying new statistical techniques can be daunting experience.This is especially true once one engages with “real life” data sets that do not allow for easy “click-and-go” analysis, but require a deeper level of understanding of programme coding, data manipulation, output interpretation, output formatting and selecting the right kind of analytical methodology.In this course you will receive a comprehensive introduction to Stata and its various uses in modern data analysis. You will learn to understand the many options that Stata gives you in manipulating, exploring, visualizing and modelling complex types of data. By the end of the course you will feel confident in your ability to engage with Stata and handle complex data analytics. The focus of each session will consistently be on creating a “good practice” and emphasising the practical application – and interpretation – of commonly used statistical techniques without resorting to deep statistical theory or equations.This course will focus on providing an overview of data analytics using Stata.No prior engagement with is Stata needed. Some prior statistics knowledge will help but is not necessary.The course is aimed at anyone interested in data analytics using Stata.Like for other professional statistical packages the course focuses on the proper application – and interpretation – of code.Some basic quantitative/statistical knowledge will be required; this is not an introduction to statistics course but rather the application and interpretation of such using Stata.Topics covered include:Getting started with StataViewing and exploring dataManipulating dataVisualising dataCorrelation and ANOVARegression including diagnostics (Ordinary Least Squares)Regression model buildingHypothesis testingBinary outcome models (Logit and Probit)Fractional response models (Fractional Logit and Beta Regression)Categorical choice models (Ordered Logit and Multinomial Logit)Simulation techniques (Random Numbers and Simulation)Count data models (Poisson and Negative Binomial Regression)Survival data analysis (Parametric, Cox-Proportional Hazard and Parametric Survival Regression)Panel data analysis (Long Form Data, Lags and Leads, Random and Fixed Effects, Hausman Test and Non-Linear Panel Regression)Difference-in-differences analysis (Difference-in-Difference and Parallel Trends)Instrumental variable regression (Endogenous Variables, Sample Selection, Non-Linear Endogenous Models)Epidemiological tables (Cohort Studies, Case-Control Studies and Matched Case-Control Studies)Power analysis (Sample Size, Power Size and Effect Size)Matrix operations (Matrix operators, Matrix functions, Matrix subscripting)
Overview
Section 1: Introduction
Lecture 1 Introduction
Section 2: Getting Started
Lecture 2 The Stata Interface
Lecture 3 Using Help in Stata
Lecture 4 Command Syntax
Lecture 5 .do and .ado Files
Lecture 6 Log Files
Lecture 7 Importing Data
Section 3: Exploring Data
Lecture 8 Viewing Raw Data
Lecture 9 Describing and Summarizing
Lecture 10 Tabulating and Tables
Lecture 11 Missing Values
Lecture 12 Numerical Distributional Analysis
Lecture 13 Using Weights
Lecture 14 The New Table Command (Stata 17)
Section 4: Manipulating Data
Lecture 15 Recoding an Existing Variable
Lecture 16 Creating New Variables, Replacing Old Variables
Lecture 17 Naming and Labelling Variables
Lecture 18 Extensions to Generate
Lecture 19 Indicator Variables
Lecture 20 Keep and Drop Data/Variables
Lecture 21 Saving Data
Lecture 22 Converting String Data
Lecture 23 Combining Data
Lecture 24 Using Macro’s and Loop’s Effectively
Lecture 25 Accessing Stored Information
Lecture 26 Multiple Loops
Lecture 27 Date Variables
Lecture 28 Subscripting over Groups
Section 5: Visualising Data
Lecture 29 Graphing in Stata
Lecture 30 Bar Graphs and Dot Charts
Lecture 31 Graphing Distributions
Lecture 32 Pie Charts
Lecture 33 Scatterplots and Lines of Best Fit
Lecture 34 Graphing Custom Functions
Lecture 35 Contour Plots (and Interaction Effects)
Lecture 36 Jitter Data in Scatterplots
Lecture 37 Sunflower Plots
Lecture 38 Combining Graphs
Lecture 39 Changing Graph Sizes
Lecture 40 Graphing by Groups
Lecture 41 Changing Graph Colours
Lecture 42 Adding Text to Graphs
Lecture 43 Scatterplots with Categories
Section 6: Testing Means, Correlations and ANOVA
Lecture 44 Association Between Two Categorical Variables
Lecture 45 Testing Means
Lecture 46 Bivariate Correlation
Lecture 47 Analysis of Variance (ANOVA)
Section 7: Linear Regression
Lecture 48 Ordinary Least Squares (OLS) Regression
Lecture 49 Factor Variables in OLS Regression
Lecture 50 Diagnostic Statistics for OLS Regression
Lecture 51 Log Dependent Variables and Interaction Effects in OLS Regression
Lecture 52 Hypothesis Testing in OLS Regression
Lecture 53 Presenting Estimates from OLS Regression
Lecture 54 Standardizing Regression Estimates
Lecture 55 Graphing Regression Estimates
Lecture 56 Oaxaca Decomposition Analysis
Lecture 57 Mixed Models: Random Intercepts and Random Coefficients
Lecture 58 Constrained Linear Regression
Section 8: Categorical Choice Models
Lecture 59 Binary Choice Models (Logit/Probit Regression)
Lecture 60 Diagnostics and Interpretation of Logit and Probit Regression
Lecture 61 Ordered and Multinomial Choice Models
Section 9: Fractional/Proportional Variable Models
Lecture 62 Fractional Logit, Beta Regression and Zero-inflated Beta Regression
Section 10: Random Numbers and Simulation
Lecture 63 Random Numbers
Lecture 64 Data Generating Process
Lecture 65 Simulating a Violation of Statistical Assumptions
Lecture 66 Monte Carlo Simulation
Section 11: Count Data Models
Lecture 67 Features of Count Data
Lecture 68 Poisson Regression
Lecture 69 Negative Binomial Regression
Lecture 70 Truncated and Censored Count Regression
Lecture 71 Hurdle Count Regression
Section 12: Survival Analysis
Lecture 72 What is Survival Analysis?
Lecture 73 Setting up Survival Data
Lecture 74 Descriptive Statistics in Survival Data
Lecture 75 Non-parametric Survival Analysis
Lecture 76 Cox Proportional Hazard’s Model
Lecture 77 Diagnostics for Cox Models
Lecture 78 Parametric Survival Analysis
Section 13: Panel Data Analysis
Lecture 79 Setting up Panel Data
Lecture 80 Panel Data Descriptives
Lecture 81 Lags and Leads
Lecture 82 Linear Panel Estimators
Lecture 83 The Hausman Test
Lecture 84 Non-Linear Panel Estimators
Section 14: Difference-in-Differences Analysis
Lecture 85 Difference-in-Differences Estimation
Lecture 86 Parallel Trend Assumption
Lecture 87 Difference-in-Differences without Parallel Trends
Section 15: Instrumental Variable Regression
Lecture 88 Instrumental Variable Regression
Lecture 89 Multiple Endogenous Variables
Lecture 90 Non-linear Instrumental Variable Regression
Lecture 91 Heckman Selection Models
Section 16: Epidemiological Tables
Lecture 92 Introduction and Rate Data
Lecture 93 Cumulative Incidence Data
Lecture 94 Case-Control Data
Lecture 95 Case-Control Data with Multiple Exposure
Lecture 96 Matched Case-Control Data
Section 17: Power Analysis
Lecture 97 Power Analysis: Sample Size
Lecture 98 Power Analysis: Power and Effect Size
Lecture 99 Power Analysis: Simple Regression
Section 18: Basic Matrix Operations
Lecture 100 Matrix Operations
Lecture 101 Matrix Functions
Lecture 102 Matrix Subscripting
Lecture 103 Matrix Operations with Data
Section 19: The Big Stata Practice Test
Anyone wanting to work with Stata,Economics/Politics/Social Science students working with data,Those working in policy and government analysing data,Business managers using quantitative evidence
Course Information:
Udemy | English | 14h 18m | 5.77 GB
Created by: F. Buscha
You Can See More Courses in the Business >> Greetings from CourseDown.com