Learning Path Python Data Visualization with Matplotlib 2.x

    Add a header to begin generating the table of contents

    Learning Path Python Data Visualization with Matplotlib 2.x

     Learning Path Python Data Visualization with Matplotlib 2.x

    Perform data visualization and represent data in the right way with Matplotlib 2.x

    What you’ll learn

    Use Matplotlib for data visualization with the Python programming language.

    Make use of various aspects of data visualization with Matplotlib.

    Work on transformation and back-ends, and change fonts and colors.

    Use Pandas and Jupyter to manipulate your tabular data.

    Master with the latest features in Matplotlib 2.

    Make clear and appealing figures for scientific publications.

    Extend the functionalities of Matplotlib with third-party packages, such as Basemap, GeoPandas,

    Mplot3d, Pandas, Scikit-learn, and Seaborn.

    Design interactive plots using Jupyter Notebook.

    Learning Path Python Data Visualization with Matplotlib 2.x


    Working knowledge on Python is needed.


    Are you looking forward to learn powerful data visualization techniques to make your data more presentable and informative? If yes, then this Learning Path is for you.

    Packt’s Video Learning Paths are a series of individual video products put together in a logical and stepwise manner such that each video builds on the skills learned in the video before it.

    Matplotlib is a multi-platform data visualization tool built upon the NumPy and SciPy frameworks. One of the most important features of Matplotlib is its ability to work well with many operating systems and graphics backends.

    Big data analytics are driving innovations in scientific research, digital marketing, policy-making, and much more.

    Matplotlib offers simple but powerful plotting interface, versatile plot types and robust customization.

    Matplotlib supports dozens of backends and output types, which means you can count on it to work regardless of which operating system you are using or which output format you wish.

    The highlights of this Learning Path are:

    Construct different types of plot such as lines and scatters, bar plots, and histograms

    Customize and represent data in 3D

    Create data visualizations on 2D and 3D charts in the form of bar charts, bubble charts, heat

    maps, histograms, scatter plots, stacked area charts, swarm plots, and much more

    Leverage the various aspects of data visualization and plots

    In this Learning Path, you’ll hit the ground running and quickly learn how to make beautiful,

    illuminating figures with Matplotlib and a handful of other Python tools.

    You’ll understand data dimensionality and set up an environment by beginning with basic plots.

    You’ll enter into the exciting world of data visualization and plotting.

    You’ll work with line and scatter plots and construct bar plots and histograms. You’ll also explore images and contours in depth.

    Plot scaffolding is a very interesting topic wherein you’ll be taken through axes and figures to help you design excellent plots.

    You’ll learn how to control axes and ticks, and change fonts and colors. You’ll work on backend and transformations.

    You’ll then explore the most important companions for Matplotlib, Pandas and Jupyter, used widely for data manipulation, analysis, and visualization. You’ll acquire the basic knowledge on how to create and customize plots by Matplotlib.

    Further, you’ll learn how to plot different types of economic data in the form of 2D and 3D graphs, which give insights from a deluge of data from public repositories, such as Quandl Finance.

    You’ll learn to visualize geographical data on maps and implement interactive charts. You’ll learn to create intuitive infographics.

    You’ll explore 3D plotting, one of the best features when it comes to 3D data visualization, along with Jupyter Notebook, widgets, and creating movies for enhanced data representation.

    Geospatial plotting will be also be explored. Finally, you’ll learn how to create interactive plots with the help of Jupyter.

    By the end of this Learning Path, you’ll be well versed with Matplotlib and construct advanced plots with additional customization techniques to perform advanced data visualization using the Matplotlib library.

    Learning Path Python Data Visualization with Matplotlib 2.x

    Meet Your Experts:

    We have combined the best works of the following esteemed authors to ensure that your learning journey is smooth:

    Benjamin Keller is a postdoctoral researcher in the MUSTANG group at Universität Heidelberg’s Astronomisches Rechen-Institut. He obtained his PhD at McMaster University and got his BSc in Physics with a minor in Computer Science from the University of Calgary in 2011.

    His current research involves numerical modeling of the interstellar medium over cosmological timescales.

    As an undergraduate at the U of C, he worked with Dr. Jeroen Stil on stacking radio polarization to examine faint extragalactic sources.

    He also worked in the POSSUM Working Group 2 to determine the requirements for stacking applications for the Australian SKA Pathfinder (ASKAP) radio telescope. At McMaster, he worked with Dr.

    Learning Path Python Data Visualization with Matplotlib 2.x

    James Wadsley in the Physics & Astronomy department. His current research was focused around understanding how the energy released from supernovae explosions regulated the flow of gas through galaxies, and how that gas is converted into stars.

    Aldrin Kay Yuen Yim is a PhD student in computational and system biology at Washington University School of Medicine.

    He also loves to explore sci-fi ideas and put them into practice, such as the development of a DNA-based information storage system (iGEM 2010, Frontiers in Bioengineering and Biotechnology 2014).

    Aldrin’s current research interest focuses on neuro-development and diseases, such as exploring the heterogeneity of cell types within the nervous system, as well as gender dimorphism in brain cancers (JCI Insight 2017).

    Aldrin is also the founding CEO of Codex Genetics Limited, which is currently servicing two research hospitals and the cancer registry of Hong Kong.

    With financial and business support from the HKSAR Innovation and Technology Commission, Hong Kong Science Park, and the Chinese University of Hong Kong, Codex Genetics has curated and transformed recent advances in cancer and neuro-genomics research into clinically actionable insights.

    Claire Yik Lok Chung is now a PhD student at the Chinese University of Hong Kong working on Bioinformatics, after receiving her BSc degree in Cell and Molecular Biology.

    With her passion for scientific research, she joined three labs during her college study, including the synthetic biology lab at the University of Edinburgh.

    Her current projects include soybean genomic analysis using optical mapping and the next-generation sequencing of data.

    Claire started programming 10 years ago, and uses Python and Matplotlib daily to tackle Bioinformatics problems and to bring convenience to life.

    Being interested in information technology in general, she leads the Campus Network Support Team in college and is constantly keeping up with the latest technological trends by participating in PyCon HK 2016.

    She is motivated to acquire new skills through self-learning and is keen to share her knowledge and experience.

    In addition to science, she has developed skills in multilingual translation and graphic design, and found these transferable skills useful at work.

    Who this course is for:

    If you want to visualize data in truly beautiful plots, this Learning Path is for you
    This Learning Path will help anyone interested in data visualization get insights from big data with Python and Matplotlib 2.x

    Course information :

    Created by Packt Publishing | Video: h264, 1280×720 | Audio: AAC 48KHz 2ch | Duration: 10:23 H/M | Lec: 87 | 1.36 GB | Language: English | Sub: English [Auto-generated].

    Course Link :


    Key words :

    Learning Path Python Data Visualization with Matplotlib 2.x.

    Download Learning Path Python Data Visualization with Matplotlib 2.x.

    Likk Download :




    See More

    With regards CourseDown.Com

    Sorry, we couldn't find any posts. Please try a different search.

    Links Download

    Scroll to Top